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In recent experiments on the growth of localized disturbances in a Blasius boundary
layer, Medeiros & Gaster (1999a, b) observed that the development of nonlinear
effects depends markedly on the initial phase of their imposed disturbance. Here,
a simple explanation of this phenomenon is proposed. Because the disturbance is
localized in space and time, it has a spread of wavenumbers and frequencies: among
these are components which can initiate a pair of resonant subharmonic waves with
well-determined phase, which are then amplified by the familiar three-wave resonance
mechanism. The amplitude attained after some time is strongly phase-dependent,
consistent with the experimental observations.

1. Introduction
Two recent papers of Medeiros & Gaster (1999a, b) have extended and refined the

well-known experiments of Gaster & Grant (1975) on the growth of small localized
disturbances in an unstable Blasius boundary layer. During the initial period of
linear evolution, the form of disturbances was found to be insensitive to the initial
phase of their excitation pulse, apart from the expected phase change. However (as
shown in figure 1 below), nonlinear distortion of the pulse at larger amplitudes was
strongly affected by the initial phase of excitation: for instance, ‘positive’ pulses (with
ejection of fluid) exhibited nonlinear effects at lower amplitudes than did ‘negative’
pulses (with withdrawal of fluid). Their data suggest that three-wave subharmonic
resonance, of the sort studied theoretically by Craik (1971), is significantly involved in
the nonlinear growth. However, due to the localized nature of the evolving wavepacket,
with a consequent spread of wavenumbers, the situation is less clear-cut than in the
vibrating-ribbon experiments of Kachanov & Levchenko (1984) and of Saric &
Thomas (1984). (In particular, the frequencies of nonlinearly excited waves are close
to, rather than precisely equal to, the half-frequency of the largest two-dimensional
mode.)

Medeiros & Gaster (1999b) convincingly argue that random external disturbances
do not play any part in their results, since the phase-dependence is a consistently
repeatable phenomenon. Accordingly, they performed a careful study to determine the
importance, in their initial pulse, of the ‘most dangerous’ components at subharmonic
frequencies. On repeating their experiments with these components entirely removed
from the initial disturbance, they found that their results were hardly altered. This
surprising fact raises interesting questions. As their results are deterministic, but
independent of the imposed subharmonic frequency components, where does the
‘seed’ for the subharmonic come from, if three-wave resonance is to play a role? And
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why does the phase of the initial disturbance play such an important part? In the
words of Medeiros & Gaster (1999b, p. 316), ‘. . . the deterministic oblique modes must
have come from some as yet unidentified mechanism of wave production’. The present
note outlines such a mechanism. (The ideas described here originate in preliminary
unpublished work, done long ago, in an attempt to understand the ‘warping’ of
wavepackets in the experiments of Gaster & Grant (1975): the new experiments have
brought this into sharper focus.)

2. Nonlinear wave forcing
Suppose that there are two constant-amplitude plane waves, with fluctuating am-

plitudes represented according to linear theory by

A1 = a1 exp [i(k1 · x− ω1t)], A2 = a2 exp [i(k2 · x− ω2t)],

in standard notation. As is well known, their quadratic interaction gives two second-
order components proportional to A1A2 and A1A

∗
2, where (∗) denotes complex conju-

gate, with respective wavenumbers k1 + k2, k1− k2 and frequencies ω1 +ω2, ω1−ω2.
Cases of three-wave resonance occur when one or other of these frequencies is close to
that of a linear wavemode with the appropriate wavenumber k1±k2: it is then possi-
ble for the new mode to grow to amplitudes comparable with that of the two original
waves (see e.g. Craik 1985). But, in all non-resonant cases, the forced quadratic dis-
turbance remains relatively small. When the wavemodes A1, A2 themselves undergo
linear amplification or damping with time t, their frequencies are complex quantities
with imaginary parts representing the exponential growth or damping rates. Provided
the growth or decay rates are small, the condition for near-resonance is much as
above, but involving only the real parts of the frequencies.

In boundary-layer instability, the situation is not quite so simple. Plane and oblique
Tollmien–Schlichting waves may have spatial as well as temporal growth or decay
rates; and these, together with the wavenumbers, slowly change as the waves propagate
downstream, owing to the increasing boundary-layer thickness. However, for present
purposes, it is sufficient to confine attention to purely temporal growth, and to suppose
that the flow is a uniform parallel shear flow without streamwise dependence. (Of
course, this would not do for a precise quantitative model.)

With coordinates x downstream, y spanwise on the plate, and z normal to the
plate, let the two linear modes A1, A2 have wavenumbers k1 = (k1, l1), k2 = (k2, l2)
in the (x, y)-plane. The dependence of their velocity components on z is governed
by a generalized Orr–Sommerfeld equation and an ancillary equation for velocity
fluctuations parallel to constant-phase lines: see e.g. Craik (1985, pp. 166–167). Their
quadratic interaction of form A1A

∗
2 enters a (weakly) nonlinear equation for each

mode A3 with wavenumber k1 − k2. This has the general form

(d/dt+ iω3)A3 = σ12A1A
∗
2, (2.1)

where σ12 is a complex constant which is expressible as an integral involving the
linear eigenfunctions and adjoint eigenfunctions of the three wavemodes: see e.g.
Craik (1985, p. 68). In fact, there is both a discrete and a continuous spectrum of
modes A3 for each wavenumber, each with its own structure in z and complex linear
eigenvalue ω3; but most of these are rapidly damped, and here it is sufficient to focus
on the least-damped mode corresponding to an oblique Tollmien–Schlichting wave.

On writing A3 = a3 exp [i(k3 · x− ω3t)] and reinstating the values for the
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ωj (j = 1, 2, 3) known from linear theory, one may integrate to obtain

a3 =
σ12a1a

∗
2 exp [−i(ω1r − ω2r − ω3r)t] exp [(ω1i + ω2i − ω3i)t]

(ω1i + ω2i − ω3i)− i(ω1r − ω2r − ω3r)
+ const. (2.2a)

Here, the subscripts r and i denote real and imaginary parts. This procedure is valid
as long as the denominator is non-zero and |A3| remains sufficiently small that it
does not influence the waves A1 and A2. Even close to three-wave resonance, result
(2.2a) may provide a satisfactory approximation during the initial stage of generation
of an A3 mode in the presence of pre-existing modes A1 and A2. However, if the
denominator of (2.2a) is exactly zero, the appropriate solution is

a3 = σ12a1a
∗
2t+ const. (2.2b)

In contrast, the subharmonic resonance mechanism of Craik (1971) envisages a
symmetric triad of waves with wavenumbers k0 = (k, 0), k+ = (k/2, l), k− = (k/2,−l),
where k0 is the initially dominant mode selected by linear amplification, and k+, k−
are subharmonic modes (usually lightly damped) with equal frequencies ω± having
real part very close to half that of the dominant mode. The last requirement means
that ±l must lie fairly close to a particular value which ensures resonance. For
Blasius flow, the corresponding wavenumbers k+ and k− are typically inclined to
the mean-flow direction at equal and opposite angles somewhere between 40◦ and
60◦. As the frequency varies rather slowly with l, but relatively rapidly with k, sharp
selection of l by the resonance criterion is not to be expected. Slightly detuned modes
with values of ±l different from the resonant value are also amplified: see Kachanov
& Levchenko (1984) and Kachanov (1994). For precise resonance, the quadratic
equations for the amplitudes a0, a+ and a− are given by Craik (1985, p. 168) and
Medeiros & Gaster (1999b, p. 311), with straightforward extension to near-resonant
cases: see e.g. Zelman & Maslennikova (1993). When the subharmonic modes have
sufficiently small amplitude compared with the fundamental mode a0, as assumed
in this paper, the alternative linear Floquet analysis of Herbert (1984) is equally
applicable.

In the notation of (2.1), the dominant mode k0 is identified with A1 ≡ A0 say, and
the subharmonics k+, k− with A2 ≡ A+ and A3 ≡ A−. If, initially, both A+ and A− are
infinitesimally small, a solution of type (2.2a) is inappropriate, since this was based
on the supposition of a small third mode A3 driven by two dominant modes A1 and
A2. Instead, with a single dominant mode A0, both A+ and A− together grow from
infinitesimal levels. If, for simplicity, we suppose that the respective linear growth rate
ωl of all three modes is zero, then the complex amplitudes a+ and a− of A+ and A−
are governed by the equations

da+/dt = λa0a
∗
−, da−/dt = λa0a

∗
+, (2.3)

where the complex amplitude a0 of mode A0 may be taken as constant, and λ is a
constant complex coefficient (cf. Medeiros & Gaster 1999b, p. 311, with their σj = 0).
For situations symmetric about the x-axis, as envisaged here, a− and a+ must be
equal. The initial evolution of small a+ and a− is then a sum of growing and decaying
exponentials, with the form

a+ = a− = eiκ(p1e
|λa0|t + ip2e

−|λa0|t), (2.4)

where p1 and p2 are arbitrary real constants and κ ≡ ph(λa0)/2. The corresponding
initial complex value of a+ and a− is exp (iκ)(p1 + ip2): if this initial value is known,
then p1 and p2 may easily be determined. The amplification factor of a+ and a− after
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time t is

|p1e
|λa0|t + ip2e

−|λa0|t|
|p1 + ip2| ≈ e|λa0|t |p1|

|p1 + ip2| for |λa0|t� 1, p1 6= 0.

This factor clearly depends on the relative magnitudes of p1 and p2: from (2.4), this
is seen to be greatest when the initial phase of a2

+ and a2− equals that of λa0 (i.e.
when p2 = 0), and it approaches zero when the initial phase of a2

+ and a2− differs
by 180◦ from that of λa0 (i.e. when p1 → 0). Such phase-dependent amplification of
subharmonic modes is demonstrated in the recent experiments of Bake, Fernholz
& Kachanov (2000): see also Kachanov (1994). This has important implications,
discussed below, for the development of nonlinear localized disturbances in the
experiments of Medeiros & Gaster (1999a, b).

3. A simple model
First, we consider an idealized and over-simplified model of a wavepacket compris-

ing just five waves, with wavenumbers k0 = (k, 0), k1 = (k + ∆, l/2), k2 = (k + ∆,−l/2),
k3 = (k − ∆,−l/2), k4 = (k − ∆,−l/2). Suppose that k0 is the linearly most-unstable
mode of the packet, and that the others are representatives of all other available
linearly unstable modes with wavenumbers centred around k0. The difference interac-
tion of k1 and k4 produces quadratic terms with wavenumber (2∆, l); and the similar
interaction of k2 and k3 produces terms with wavenumber (2∆,−l). Let the real part
of the frequency of modes k1 and k2 be ω1r say; and let that of modes k3 and k4

be ω1r − δ. Then, the above difference interactions drive wavenumbers (2∆,±l) with
frequency δ.

If it should happen that 2∆ = k/2 and δ = ω0r/2, these components will correspond
precisely with the subharmonic modes k+ and k− which interact resonantly with the
linearly most-unstable mode k0 with (real) frequency ω0r . In that event, the initial
selection of the resonant subharmonics is made by the above quadratic interactions.
But, since the amplitude of the most-unstable mode k0 is usually considerably larger
than that of the other waves kj(j = 1, 2, 3, 4), the subsequent resonant growth of the
subharmonics should then follow roughly in accord with (2.3), but with the arbitrary
real constants p1 and p2 which appeared in the previous section now pre-determined
by the initial quadratic forcing.

However, we must proceed rather less intuitively. If we impose the same restrictive
assumption made above, that the linear growth or decay of participating modes may
be neglected, and retain all relevant quadratic terms but neglect all terms of higher
order, equations (2.3) are replaced by

da+/dt = λa0a
∗
− + µa1a

∗
3, da−/dt = λa0a

∗
+ + µa1a

∗
3, (3.1)

where λ and µ correspond to the respective coefficients σij of the participating modes,
as introduced at (2.1) above. Here, we have also invoked symmetry with respect to y,
setting the constant complex amplitudes of both modes k1 and k2 equal to a1, and
those of k3 and k4 equal to a3. (More formally, one may take all five participating
mode amplitudes to be O(ε), where ε is a small parameter, which depend on the slow
time variable τ = εt: one then neglects all terms of higher order than O(ε2). This
procedure remains valid even when a− and a+ are initially zero.)

Taking a− = a+ as before, and introducing the transformation a− = a+ ≡
b− (µa1a

∗
3/λa0)

∗ yields the equation

db/dt = λa0b
∗, (3.2)
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which has the same solution for b(t) as that given in (2.4) for a+ and a−. Accordingly,
the extra constant forcing terms shift the effective origin of a+ and a−. The solution
having a− = a+ = 0 at time t = 0 is that with b(0) = (µa1a

∗
3/λa0)

∗. But the general
solution for b(t) is just that of (2.4), and the initial condition a− = a+ = 0 requires
that

p1 + ip2 = eiκ(µa1)
∗a3|λa0|−1. (3.3)

Accordingly, a− and a+ are known for all times t > 0.
Now, since a− = a+ = 0 initially, this solution has da±/dt initially equal to µa1a

∗
3:

that is to say, the solution with initial growth from zero is at first driven by the
interaction of modes a1 and a3 alone. This is just as envisaged in (2.2b) (but now with
σ12 = µ and suffices 3, 2 replaced by ±, 3), and in the remarks at the start of this
section. At later times such that |λa0|t� 1 (but not so large that a0 is itself nonlinearly
affected), the resonant subharmonic interaction with a0 becomes dominant, and the
‘amplification factor’ given below (3.4) is

e|λa0|t |p1|
|p1 + ip2| = e|λa0|t| cos [ 1

2
ph(λa0)− ph(µa1a

∗
3)]|. (3.4)

However, this amplification factor is for |b(t)|, not |a±(t)|. Although still a good
measure of the dependence of the disturbance size on the phases of the participating
waves after some time has elapsed, a more appropriate quantity is the asymptotic
value of |a±(t)|, which is

|a±| ≈ e|λa0|t |µa1a3|
|λa0| | cos [ 1

2
ph(λa0)− ph(µa1a

∗
3)]|. (3.5)

Thus, through the cosine term, the growth of the subharmonic is influenced by
the phases of the members of the initial wavepacket, in qualitative agreement with
the experimental findings of Medeiros & Gaster (1999a, b); but closer examination is
necessary before concluding that the correct explanation has been found.

Of course, this model is a gross over-simplification of the experimental situation,
and several questions must now be addressed. (i) Do the experiments admit linearly
unstable modes with the wavenumber and frequency characteristics postulated above?
(ii) If so, can an extended version of the above model be constructed to take account
of a multiplicity of modes? (iii) To what extent is one justified in ignoring the linear
growth or decay rates of the participating modes during the period of nonlinear
evolution?

4. Multi-mode wavepackets
In practice, a localized wavepacket consists of very many Fourier modes, many pairs

of which have the potential to drive up a subharmonic mode, in much the same way
as the wave pairs k1, k4 and k2, k3 of the previous section. A necessary requirement
is that the linearly unstable bands of frequency and wavenumber are sufficiently wide
to admit a difference interaction which supports the subharmonic modes. Among
Medeiros & Gaster’s (1999b) experimental data are graphical descriptions of their
developing wavepackets in the frequency versus spanwise-wavenumber plane. They
suggest that a subharmonic resonance mechanism (such as is modelled above by
equation (2.3)) may operate at downstream distances greater than their x = 0.5 m,
but that some other unknown deterministic mechanism must first initiate the small
subharmonics somewhere between x = 0.3 m and 0.5 m.
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Figure 1. Some experimental wavepackets of Medeiros & Gaster (1999b), in terms of frequency β
and spanwise wavenumber αz , with relative amplitudes indicated by the grey-scale. (a) Near-identical
wavepackets with positive initial pulse (phase = 0◦) and negative initial pulse (phase − 180◦) at
downstream distances x = 0.5 m and 0.7 m. (b) Wavepackets farther downstream, at x = 1.0 m and
1.1 m, showing the effect of nonlinearity for different initial phases 45◦, 0◦, −135◦, −180◦. Asterisks
indicate the locations of resonant subharmonics. (Reproduced, with permission, from Medeiros &
Gaster’s figures 3 and 4.)

Taken from Medeiros & Gaster (1999b, figure 3), wavepacket graphs of spanwise
wavenumber (their αz) versus frequency (their β) at x = 0.5 m and 0.7 m are shown
in figure 1(a) for both positive and negative pulses. Clearly, there is little difference
between positive and negative cases. The grey-scale represents the relative magnitudes
of the wavemodes. But, further downstream, the phase of the initial disturbance
becomes increasingly important. Figure 1(b) shows some of Medeiros & Gaster’s data
(from their figure 4) at x = 1.0 m and 1.1 m, for initial phases of 0◦, 45◦, −180◦ and
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−135◦. A positive pulse has phase of 0◦ and a negative one −180◦: for a description of
how the initial phase was controlled, see Medeiros & Gaster (1999a, p. 270). Asterisks
denote the theoretical location of the subharmonic modes which resonate with the
strongest two-dimensional mode. The growth of near-subharmonic modes is evidently
far stronger for phases 0◦ and 45◦ than for −180◦ and −135◦.

The frequency parameter β is our ωr , and the spanwise-wavenumber parameter
αz is our l. The packets at small x-values are roughly elliptical or ‘cigar-shaped’,
with minor and major axes located at 0.075 < β < 0.125 and −0.15 < αz < 0.3 ap-
proximately, for x = 0.5 m. (The asymmetry with respect to αz is surprising and
unexplained; but further downstream this becomes less marked. Below, we examine
a symmetric model with −0.24 6 αz = l 6 0.24.) The most amplified mode is located
near β = 0.1 at a small value of αz which we shall take to be zero in accord with the-
ory. The subharmonics which resonate with the most-amplified mode have β = 0.05
and αz = 0.17 approximately. This value of β = 0.05 is almost exactly equal to the
maximum recorded width of the packet in the β-direction at x = 0.5 m: this does not
seem to be a mere coincidence, for this is the minimum width necessary to admit
pairs of linear modes capable of generating the subharmonic by difference interac-
tion, as outlined in the preceding section. In fact, since the lowest recorded amplitude
of Medeiros & Gaster was 0.02 units, the full bandwidth of the developing packet
predicted by linear stability theory is somewhat larger than that recorded; therefore,
the actual width must be slightly larger than the minimum required.

For purposes of illustration, consider an array of 45 modes, shown schematically in
figure 2, at frequencies mδ(6 6m6 10) and spanwise wavenumbers l = nε(−4 6n6 4),
for suitable constants δ and ε. We envisage that the central mode with (m, n) =
(8, 0) has greatest amplitude, and that its resonant subharmonics, in the sense of
Craik (1971), are at (m, n) = (4,±3): that is, we suppose that the latter modes have
downstream wavenumber components exactly half that of the (8, 0) mode. This, of
course, is still a crude representation of the Medeiros & Gaster data, with far fewer
modes. The only available difference interactions with the required subharmonic
frequency 4δ are those between members of the top and bottom rows; and only those
with n-values differing by 3 give the correct spanwise wavenumber. Six such pairs
are capable of driving a (4, 3) mode, and another six a (4,−3) mode. With a broader
range of available frequencies than the minimum range chosen here, the possible
number of suitable interacting pairs is of course much increased. However, not all (or
perhaps any) of these pairs need yield the desired subharmonic x-wavenumber.

In fact, the downstream wavenumber k is known to vary almost linearly with
frequency; and it decreases only fairly slowly with l (or αz) at fixed frequency,
the change in k being approximately proportional to l2 because of symmetry. For
instance, at a Reynolds number R (based on displacement thickness) equal to 1000,
the linearly unstable band of two-dimensional waves has dimensionless frequencies in
the approximate range 0.051 to 0.122, with corresponding dimensionless wavenumbers
varying from about 0.16 to 0.33. In contrast, with fixed frequency, the downstream
wavenumber decreases only by about 10% as the angle of the wavenumber vector
changes from 0 to 45◦: see, for example, Craik (1971, figure 2) which shows a curve
of constant frequency in the wavenumber plane at R = 882. An empirical formula in
the spirit of our rough model is, in appropriate units,

k = 0.04 + 2.4β − 0.4l2; (4.1)

or, equivalently, 0.04 + 2.4mδ − 0.4(nε)2, where we may take δ = 0.0125 and ε = 0.06
to correspond approximately with the packets of figure 1(a) at x = 0.5 m.
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Figure 2. A postulated wavepacket with 45 components. The arrows denote subharmonics which
resonate with the most-central mode, and lines indicate the interactions most likely to drive these
harmonics.

With this model frequency–wavenumber relation (4.1), it is now easy to estimate
the x-wavenumbers resulting from the various difference interactions at a fixed
value of R. These must have the (m, n)-forms (10, n) − (6, n − 3) and (10, n − 3) −
(6, n)(n = −1, 0, 1, 2, 3, 4); and, according to our formula for k, their corresponding
x-wavenumbers range from k = 0.098 to 0.1416. Since the dominant (8, 0) mode has
k ≡ k0 = 0.28, only two pairs are really close to the resonant subharmonic modes
(4,±3) with k = k0/2 = 0.14. These are the interactions of (10, 0) with (6, 3), and
of (10, 0) with (6,−3), which give (4,±3) with k = 0.133; and that of (10, 1) with
(6, 4), and of (10,−1) with (6,−4), which give (4,±3) with k = 0.1416. The latter is
particularly close to exact resonance.

This model readily extends to a continuum of modes occupying the same pos-
tulated rectangular region 0.075 6 β 6 0.125, −0.24 6 l 6 0.24. Choose one compo-
nent (mode A, say) with β = βA = 0.125, l = lA; and another (mode B, say) with
β = βB = 0.075, l = lB. Their corresponding x-wavenumbers kA and kB are given by
our empirical formula above. The resonant subharmonics of the central mode with
β = 0.10 and l = 0 must have k = 0.14, l = 0.18 and β = 0.05, as before. These res-
onant values coincide with the difference interaction of modes A and B whenever
both |lB − lA| = 0.18 and kA − kB = 0.14. The latter is satisfied by our formula when
l2B − l2A = 0.05. The two solutions are approximately lA = ±0.05, lB = ±0.23 with cor-
responding signs. (In the above discrete model, l = 0.06n with n = −1, 0, 1, 2, 3, 4,
pairs closest to resonance have nA = ±1, nB = ±4. The present values for precise
resonance correspond to nA = ±0.83, nB = ±3.83 consistently with this result.) We
may therefore conclude that a suitable excitation mechanism exists for ‘seeding’ the
subharmonic mode, by direct quadratic interaction of members of the available set
of wavemodes.

In the experiments of Medeiros & Gaster (1999a, b), the phase of the initial
disturbance greatly affected the nonlinear growth. In these experiments, the localized
initial disturbance was specified in such a way that the complex amplitudes aj
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of all excited wavemodes have the same phase, say φ. While these modes remain
uninfluenced by nonlinearity, these phases remain constant as the corresponding Aj
vary periodically with appropriate exponential factors exp (iωrt). A phase-dependent
measure of the growth of the resonant subharmonic is given in (3.5), where the cosine
term reduces to | cos [ 1

2
phλ+ 1

2
φ− phµ]|. The greatest amplification therefore occurs

when φ = 2phµ− phλ, and the least when φ = 2phµ− phλ± π. This least growth rate
is zero according to our criterion with p1 6= 0; but, in theory, there is exponential decay
from (2.4) when p1 = 0. However, in practice, the theoretical prediction of decay when
φ = 2phµ− phλ± π is unlikely to be realised for long: rather, close to this phase
relationship (which is called ‘anti-resonant’ by Bake et al. 2000), random external
disturbances would come into play. But, for almost all initial phases, the evolution
will be deterministic. Moreover, if 2phµ − phλ happens to be small, positive initial
disturbances will grow much faster than negative ones, as was found by Medeiros &
Gaster (1999a, b).

It is known that, in some circumstances, phλ is small. For instance, Hendricks
(1975) reports computational results at R = 882. Then, the most unstable wave has
downstream wavenumber k0 = 0.254 and the resonant subharmonics have k = 0.127,
±l = 0.148: the corresponding value of λ was found to be 6.0745 + 0.6499 i. For other
resonant triads with wavenumbers k in the range 0.2 to 0.5, Hendricks found that the
phase of λ was always rather small, but it increased at values of k less than 0.2 (see
Usher & Craik, table 2, p. 458). Unfortunately, corresponding quantitative results for
the phase of µ are unavailable.

A more precise model than that given here must take account of the relative
amplitudes and linear growth rates of all participating modes. A rather similar scenario
should apply. In fact, many wave pairs of a continuum may excite disturbances close
to the resonant subharmonics of the strongest two-dimensional mode, provided the
bandwidth of the packet of linearly unstable modes is sufficiently broad that: (a) its
frequency range ωmax − ωmin is at least as great as the subharmonic frequency, and
(b) its range kmax − kmin of downstream wavenumbers is as great as the downstream
wavenumber of the resonant subharmonic. If both these requirements are met, then
the third requirement of a sufficient spread of spanwise wavenumbers is sure to be
satisfied for initially localized disturbances. When exponential linear growth factors
are retained, the forced quadratic terms involve exponentials equal to the sum of the
growth rates of the two participating modes, as in result (2.2a): then, the initial growth
of the driven terms would be even faster. But a more precise theoretical description
would require extensive computation, for which the present writer has neither the
appetite nor expertise. Nevertheless, the above simple considerations seem to provide
a convincing explanation of the results of Medeiros & Gaster (1999a, b), which at
first seemed so surprising.

This work was carried out during a visiting research appointment at the Research
Institute for Mathematical Sciences, Kyoto University, Japan: I am most grateful to
the Institute staff, and particularly to Professor H. Okamoto, for their kind hospitality.
I also thank the referees for useful comments.
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